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Abstract

In this paper, we aim to obtain improved attention for a visual
question answering (VQA) task. It is challenging to provide
supervision for attention. An observation we make is that vi-
sual explanations as obtained through class activation map-
pings (specifically Grad-CAM) that are meant to explain the
performance of various networks could form a means of su-
pervision. However, as the distributions of attention maps and
that of Grad-CAMs differ, it would not be suitable to directly
use these as a form of supervision. Rather, we propose the
use of a discriminator that aims to distinguish samples of vi-
sual explanation and attention maps. The use of adversarial
training of the attention regions as a two-player game be-
tween attention and explanation serves to bring the distribu-
tions of attention maps and visual explanations closer. Signifi-
cantly, we observe that providing such a means of supervision
also results in attention maps that are more closely related to
human attention resulting in a substantial improvement over
baseline stacked attention network (SAN) models. It also re-
sults in a good improvement in rank correlation metric on the
VQA task. This method can also be combined with recent
MCB based methods and results in consistent improvement.
We also provide comparisons with other means for learning
distributions such as based on Correlation Alignment (Coral),
Maximum Mean Discrepancy (MMD) and Mean Square Er-
ror (MSE) losses and observe that the adversarial loss out-
performs the other forms of learning the attention maps. Vi-
sualization of the results also confirms our hypothesis that
attention maps improve using this form of supervision.

1 Introduction

When asked a question based on an image, a human invari-
ably focuses on the part of the image that aids in answer-
ing the question. This is a commonly known fact in cog-
nitive science. An extreme example that depicts perceptual
blindness was demonstrated by (Simons and Chabris 1999),
where two groups of participants are passing balls. When
asked to count the balls, viewers ignore a gorilla in the video
as it is not pertinent to the task of counting. However, the
deep networks that solve semantic tasks such as visual ques-
tion answering do not have such attentive mechanisms. The
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fact that the existing deep networks do not attend to the areas
that humans do was shown by the work of (Das et al. 2016).
While there have been some works that aim to improve the
attended regions, it is challenging as obtaining supervision
for attention is tedious and may not always be possible for
all the semantic tasks that we would like to use deep net-
works. In this paper, we propose a simple method to obtain
self-supervision to guide attention.

The main idea is that given the task of solving visual ques-
tion answering (VQA), there exist methods based on obtain-
ing visual explanations such as Grad-CAM (Selvaraju et al.
2017) that obtain class activation mappings from gradients
that allow us to understand the areas that a network focuses
while solving the task for the correct class label. As dur-
ing training, class labels are available for the VQA task; it
is easy to obtain such supervision. Using this, it is possi-
ble to obtain surrogate supervision for supervising attention.
One can obtain the visual explanation using the ground-truth
label for a deep network that solves the visual question an-
swering task. As the network is provided the actual label, the
corresponding activation maps do aid in solving the task.
Therefore, we hypothesize that this supervision can aid in
obtaining better attention maps, and this is evident from the
results that we obtain.

The next challenge is to consider how the surrogate su-
pervision obtained from Grad-CAM can be used to obtain
better attention regions. Directly using these as supervision
is not optimal as the distributions for the visual explanation
differs from that of the attention maps as the attention maps
are also supervised by the task loss. We show that just using
the mean-square error loss for the two maps is sub-optimal.
In this paper, we show that a very simple way of using a
two-player game between a discriminator that tries to dis-
criminate between Grad-CAM results & attention maps and
a generator that generates attention maps serves to provide
substantially improved attention maps. We show that this
method performs much better and also provides state of the
art results in terms of attention maps that correlates well with
human attention maps. To summarize, through this paper, we
provide the following contributions :

• We propose a means for obtaining surrogate supervision
for obtaining better attention maps based on the visual ex-
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planation in the form of Grad-CAM results. This method
performs better as compared to other forms of surrogate
supervision such as using RISE (Petsiuk, Das, and Saenko
2018).

• We show that this surrogate supervision can be best used
through a variant of adversarial learning to obtain atten-
tion maps that correlate well with the visual explanation.
Further, we observe that this performs better as against
other means of supervision, such as MMD (Tzeng et al.
2014) or CORAL (Sun and Saenko 2016) losses.

• We provide various comparisons and results to show that
we obtain better attention maps that correlate well with
human attention maps and outperform other techniques
for VQA. Further, we show that obtaining better attention
maps also aids in obtaining better accuracies while solv-
ing for VQA. A detailed empirical analysis for the same
is provided.

1.1 Motivation

In VQA, given an image & a query, the attention model aims
to learn the regions in an image pertinent to the answer. (Das
et al. 2016) has proposed Human Attention (HAT) dataset
for VQA task where human annotators have annotated the
regions attended in the image to mark the answer based on
the question. The regions pointed by humans for answer-
ing the visual question are more accurate as compared to
those obtained by other techniques. This can be concluded
through an experiment on HAT dataset where we replace
human attention with attention obtained using stacked atten-
tion network with one stack. We observe that the prediction
accuracy increases with ground truth human attention map
for the stacked attention network (Yang et al. 2016). We be-
lieve that human attention cannot be directly used as super-
vision, as there are not enough examples of human attention
(58K/215K). Further, such a method would not generalize
well to novel tasks. However, we are motivated by this result
and have therefore developed in this paper a self-supervision
based method to improve attention. We formulate a game
between Attention vs. Explanation using adversarial mech-
anism. Through this game, we observe that we obtain im-
proved attention regions, which lead to improved prediction
and therefore, also results in better regions obtained through
visual explanation as shown in the figure- 2. Thus, improv-
ing attention using Grad-CAM results in an improvement in
Grad-CAM too. To ensure whether our approach is prudent,
we evaluate whether using grad-CAM as self-supervision is
beneficial. We do this by an experiment that replaces atten-
tion mask with Grad-CAM mask, and we observed that the
classification accuracy of the VQA (SAN) model increases
by 4% on the validation set. This provides a strong intuition
to consider using Grad-CAM as self-supervision for the at-
tention module.

2 Related work

Visual question answering (VQA) was first proposed by
(Malinowski and Fritz 2014). Subsequently, (Geman et al.
2015) proposed a ”Visual Turing test” where a binary ques-
tion is generated from a given test image. This is in con-

trast to modern approaches in which the model is trying to
answer free-form open-ended questions. A seminal contri-
bution here has been standardizing the dataset used for Vi-
sual Question Answering (Antol et al. 2015). The meth-
ods for VQA can be categorized into joint embedding ap-
proaches and attention based approaches. Joint embedding
based approaches have been proposed by (Antol et al. 2015;
Ren, Kiros, and Zemel 2015; Goyal et al. 2017; Noh, Hong-
suck Seo, and Han 2016) where visual features are com-
bined with question features to predict the answer. Atten-
tion based approaches are the other category of methods for
solving VQA. It comprises of image based, question based
and some that are both image and question based attention.
(Shih, Singh, and Hoiem 2016) has proposed an image based
attention approach, the aim is to use the question in order to
focus attention over specific regions in an image. (Yang et
al. 2016) has proposed a method to repeatedly obtain atten-
tion by using stacked attention over an image based on the
question. Our work uses this as one of the baselines. (Li and
Jia 2016) has proposed a region based attention model over
images. Similarly, (Zhu et al. 2016; Xu and Saenko 2016;
Bao et al. 2018) have proposed interesting method for ques-
tion based attention. A work that explores joint image and
question includes that is based on hierarchical co-attention is
(Lu et al. 2016). There has been interesting work by (Fukui
et al. 2016; Kim et al. 2017; Kim, Jun, and Zhang 2018;
Patro et al. 2018) that advocates multimodal pooling and ob-
tains close to state of the art results in VQA.

The task of VQA is well studied in the vision and
language community, but it has been relatively less ex-
plored for providing explanation (Selvaraju et al. 2017;
Goyal et al. 2017) for answer prediction. We start with im-
age captioning (Socher et al. 2014; Vinyals et al. 2015;
Karpathy and Fei-Fei 2015; Xu et al. 2015; Fang et al. 2015;
Chen and Lawrence Zitnick 2015; Johnson, Karpathy, and
Fei-Fei 2016; Yan et al. 2016) to provide a basic explanation
for an image. The next level of challenging task is to pro-
vide an explanation for the visual question answering sys-
tem. The attention-based model provides some short of basic
explanation for VQA. This is observed that models (Das et
al. 2016) are not looking at the same regions as humans are
looking. So we need to improve the attention of the model
and its explanation for answer prediction. (Patro et al. 2018)
has proposed an exemplar-based method to improve the at-
tention map for the VQA task. (Jain and Wallace 2019)
has proposed a method to evaluate how attention weights
can provide a correct explanation in language prediction
task. Recently, Uncertainty based explanation method (Pa-
tro et al. 2019) is proposed to improve the attention mask
for VQA. There are very interesting methods to provide vi-
sual explanations such as Grad-CAM (Selvaraju et al. 2017),
RISE (Petsiuk, Das, and Saenko 2018), U-CAM (Patro et al.
2019). In contrast to the above-mentioned approaches, we
focus on improving image-based attention using an adver-
sarial game between visual explanation mask (Grad-CAM)
and attention mask and show that it correlates better with
human attention. Our approach allows the use of visual ex-
planation as a means for obtaining surrogate supervision for
attention.
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Figure 1: Illustration of model PAAN and its attention mask. Image feature and question feature are obtained using CNN and
LSTM respectively. Attention mask is then obtained using these features and classification of the answer is done based on the
attended feature. We have improved the attention mask with the visual explanation approaches based on Grad-CAM

3 Method

The main focus in our approach for solving visual question
answering (VQA) is to use supervision obtained from vi-
sual explanation methods such as Grad-CAM to improve at-
tention. As mentioned earlier, using Grad-CAM as attention
shows improved performance in comparison to just using at-
tention alone. Therefore, we believe that Grad-CAM, or any
other visual explanation method can be used in this setting.
Further, by learning both the visual explanation and attention
jointly in an adversarial setting, we observe improvements in
both as shown empirically.

The key differences in our architecture as compared to an
existing VQA architecture is the use of visual explanation
and attention blocks in an adversarial setting. This is illus-
trated in figure 1. The other aspects of VQA are retained
as is. In particular, we adopt a classification based approach
for solving VQA where an image embedding is combined
with the question embedding to solve for the answer. This is
done using a softmax function in a multiple choice setting:
Â = argmax

A∈Ω
P (A|I,Q, θ), where Ω is a set of all possible

answers, and θ represents the parameters in the network.

3.1 Our Approach

The three main components of our approach, as illustrated in
figure 1 are 1) Attention representation, 2)Explanation rep-
resentation, 3) Adversarial Game. The details of our method
are provided in the following sub-sections:

Attention Representation Initially, we obtain an embed-
ding gi for an image Xi using a convolution neural net-
work (CNN). Similarly, we obtain a question feature embed-
ding gq for the query question XQ using an LSTM network.
These are input to an attention network that combines the

image and question embeddings using a weighted softmax
function and produces a weighted output attention vector gf .
There are various ways of modeling the attention network.
In this paper, we have evaluated the network proposed in
SAN (Yang et al. 2016) and MCB (Fukui et al. 2016).

Explanation Representation One of the ways for under-
standing a result obtained by a deep network is to use visual-
ization strategies. One such strategy that has gained accep-
tance in the community is based on Grad-CAM (Selvaraju
et al. 2017). Grad-CAM uses the gradient information of
the last convolutional layer to visualize the contribution of
each pixel in predicting the results. Note that Grad-CAM
uses ground-truth class information and finds the gradient
of the score for a class c in a convolution layer. It averages
the gradient values to find the averaged μ values for each of
the channels of the layer. We follow this approach, and fur-
ther details are provided in (Selvaraju et al. 2017). We have
also evaluated with another such approach termed as RISE
(Petsiuk, Das, and Saenko 2018). We observed better results
using Grad-CAM.

Adversarial Game A zero-sum adversarial game between
two players (P1, P2) is used with one set of players being a
Generator network and the other being a discriminator net-
work. They choose a decision from their respective decision
sets K1 and K2. In our case, the attention network is the
generator network, and the ‘real’ distribution is the output
of Grad-CAM network. We term the resultant network as
‘Adversarial Attention Network’ (AAN). A game objective
L(G,D) : K1 × K2 ∈ R, sets the utilities of the players.
Concretely, by choosing a proper strategy (G,D) ∈ K1×K2

the utility of P1 is −L(G,D), while the utility of P2 is
L(G,D). The goal of either P1/P2 is to maximize their worst
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case utilities; thus,
min
G∈K1

max
D∈K2

L(G,D) (Goal of P1),

max
D∈K2

min
G∈K1

L(G,D) (Goal of P2)
(1)

The above formulation raises the question of whether there
exists a solution(G∗, D∗) to which both players may jointly
converge. The solution to this question is to obtain a Nash
equilibrium where the Discriminator is unable to distinguish
the generations of the Generator network from the ‘real’ dis-
tribution i.e. [maxD∈K2

L(G∗, D) = minG∈K1
L(G,D∗)].

Since pure equilibrium does not always exist (Nash and
others 1950), there exists an approximate solution for this
issue as a Mixed Nash Equilibrium,i.e.

max
D∈K2

EG∼D1
L(G,D) = min

G∈K1

ED∼D2
L(G,D) (2)

WhereD1 is the distribution overK1, andD2 is the distribu-
tion over K2. In zero-sum adversarial game, the sum of the
generator’s loss and the discriminator’s loss is always zero,
i.e. the generator’s loss is: LG = −LD. The solution for a
zero-sum game is called a minimax solution, where the goal
is to minimize the maximum loss. We can summarize the
entire game by stating that the loss function is LG (which is
the discriminator’s payoff), so that the minimax objective is
min
G

max
D

L1(G,D) = Eggi∼Gg(xi)[logD(ggi/xi)]+

Egfi∼Gf (xi)[log(1−D(G(gfi/xi)))]

(3)
For simplicity, we remove subscript i. Here gg is the out-
put of Grad-cam network Gg for a sample, xi and gf is the
output of the attention network. The discriminator wants to
maximize the objective (i.e., its payoff) such that D(gg/x)
is close to 1 andD(G(gf/x)) is close to zero. The generator
wants to minimize the objective (i.e., its loss) so that D(G(z))
is close to 1. Specifically, the discriminator is a set of CNN
layers followed by a linear layer that uses a binary cross en-
tropy loss function. In case we have access to ground-truth
attention obtained from humans, we can directly use this in
our framework. Here, we assume that we do not have access
to such ground-truth as it is challenging to obtain this and is
being used only for evaluation.

The final cost function for the network combines the loss
obtained through an adversarial loss for the attention net-
work along with the cross-entropy loss while solving for
VQA. The final cost function used for obtaining the param-
eters θf of the attention network, θy of the classification net-
work, and θd for the discriminator is as follows:

C(θf , θy, θd) =
1

n

n∑

j=1

(Lj
c(θf , θy) + ηLj(θf , θd)) (4)

Where n is the number of examples, and η = 10 is the hyper-
parameter, fine-tuned using validation set and Lc is standard
cross entropy loss. We train the model with this cost function
till it converges so that the parameters (θ̂f , θ̂y, θ̂d) deliver a
saddle point function.

(θ̂f , θ̂y) = argmax
θf ,θy

(C(θf , θy, θ̂d))

(θ̂d) = argmin
θd

(C(θ̂f , θ̂y, θd))
(5)

Algorithm 1 Training PAAN
Input: Image XI , Question XQ

Output: Answer XA

repeat
Attention features Gf (Gi(XI), Gq(XQ))← ga
Classification score Gy(ga)← ŷ
Answer cross entropy Ly ← loss(ŷ, y)
Compute Gradient,Lf =

∂Ly

∂θy
,Li =

∂Lf

∂θf

update θc ← θc - ∂Lc

∂θc
Explanation features ft(θf , Xt)← Xt

repeat
Sample fake mini batch(Attention): α1 . . . α196

Sample real mini batch(Gradient): μ1 . . . μ196

Discriminator: Dr
k(μk)← drk, D

f
k (αk)← dfk

Update the discriminator by ascending its stochastic
gradient
∇θd

1
m

∑m
i=1[logD(μk) + log(1−D(αk))]

until k = 1 : K
Sample fake mini batch(Attention): α1 . . . α196

Update the Generator by descending its stochastic gra-
dient: ∇θg

1
m

∑m
i=1 log(1−D(α))

until Number of Iteration

Pixel-wise Adversarial Attention Network (PAAN): A
variation of the adversarial attention network is to obtain a
local pixel-wise discriminator for obtaining an improved at-
tention network. The idea of pixel-wise discriminators has
been studied for generative adversarial networks (GANs)
and is termed patch-GAN. We show here, that doing pixel-
wise (with multiple channels per pixel) attention network
results in an improved attention network. We term this net-
work a Pixel-wise Adversarial Attention Network (PAAN).
Though this network uses more local discrimination, it does
not increase the parameters of the network as compared to
AAN. The effect of local discrimination results in improved
attention as well as explanation. The algorithm for training
the same is provided in Algorithm 1. The resultant min-max
loss function is obtained as follows:
min
G

max
Dk

Lk
1(G,D

k) = Eggi∼Gg(xi)[logD
k(ggi/xi)]+

Egfi∼Gf (xi)[log(1−Dk(G(ggi/xi)))]

(6)

Finally, the actual cost function for training the pixel-wise
discriminator, attention network and Grad-CAM is given by:

C(θf , θy , θ
k
d |Kk=1) =

1

n

n∑

j=1

(
Lj
c(θf , θy) + η

K∑

k=1

Lj,k(θf , θ
k
d)
)

The main problem we face is the model convergence issue
where the model parameter oscillates and does not converge
using gradient descent in a minimax game. To handle con-
vergence issue, we add JS-divergence (Fuglede and Topsoe
2004) to the cost function, which penalizes a poor generated
mask badly as compared to a good one, which is different
from KL-divergence (Kullback and Leibler 1951). The sec-
ond issue faced is “vanishing gradient”, when discrimina-
tor is successful (which can well distinguish between gener-
ated and discriminator sample), then the generator gradient
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Model RC(↑) EMD(↓)
SAN (Das et al. 2016) 0.2432 0.4013
CoAtt-W (Lu et al. 2016) 0.246 –
CoAtt-P (Lu et al. 2016) 0.256 –
CoAtt-Q (Lu et al. 2016) 0.264 –
MMD RISE 0.2591 0.3992
Coral RISE 0.2609 0.3978
MSE RISE 0.2622 0.3921
AAN RISE 0.2683 0.3900
PAAN RISE 0.2754 0.3894
MMD (ours) 0.2573 0.3895
Coral (ours) 0.2563 0.3851
MSE (ours) 0.2681 0.3814
AAN (ours) 0.2896 0.3721
PAAN (ours) 0.3071 0.3701

PAAN Ran 07 0.1213 0.6700
PAAN Ran 20 0.1746 0.5872
Human (Das et al. 2016) 0.623 –

Table 1: Attention mask comparison for SOTA & Ablation
Methods

vanishes and learns nothing. To handle this issue, we add
Pearson-χ2 divergence (Mao et al. 2017) to the GAN cost
function.

3.2 Variations of Proposed Method

While we advocate the use of Adversarial explanation
method for improving the attention mask, we also evaluate
several other explanation methods for this architecture. Our
intuition is that, if we learn an attention mask that minimizes
the distance between attention probability distribution and
the gradient class activation map, then we are more easily
able to train our VQA classifier module to provide correct
answer. To minimize these distances we have used various
methods.

Maximum Mean Discrepancy (MMD) Net: In this vari-
ant, we minimize this distance using MMD (Tzeng et al.
2014) based standard distribution distance metric. We have
computed this distance with respect to a representation ψ(.).
In our case, we obtain representation feature ψ(α) for atten-
tion & ψ(μ) for Grad-CAM map.

CORAL Net: In this variant, we minimize distance be-
tween second-order statistics (co-variances) of attention and
Grad-CAM mask using CORAL loss (Sun and Saenko
2016) based standard distribution distance metric. Here,
both (μ) and (α) are the d-dimensional deep layer activa-
tion feature for attention and Grad-CAM maps. We have
computed feature co-variance matrix of attention feature and
Grad-cam feature represented by C(α) and C(μ) respec-
tively.

We trained our variants MMD and CORAL directly with-
out adversarial loss to bring Grad-CAM based pseudo dis-
tribution close to attention distribution. Finally we replace
MMD and CORAL with adversarial loss.

Models All Yes/No Num Oth

Baseline-ATT 56.7 78.9 35.2 36.4
MMD SAN RISE 56.9 79.1 35.8 38.1
Coral SAN RISE 57.4 79.8 36.0 39.6
MSE SAN RISE 58.2 80.1 36.4 40.2
AAN SAN RISE 59.3 80.4 36.9 42.5
PAAN SAN RISE 60.1 80.8 37.3 44.2
MMD SAN GCAM 58.9 80.3 37.0 43.7
Coral SAN GCAM 59.4 80.8 36.5 45.1
MSE SAN GCAM 60.8 80.0 36.8 47.1
AAN SAN GCAM 62.3 80.4 37.2 49.8
PAAN SAN GCAM 63.6 81.1 36.9 50.9
AAN MCB GCAM 66.4 84.6 37.8 54.7
PAAN MCB GCAM 67.1 85.0 38.4 55.9

PAAN SAN Ran 07 55.2 77.2 35.1 36.2
PAAN SAN Ran 20 57.3 78.7 35.6 39.7

Table 2: Ablation analysis for Open-Ended VQA1.0 accu-
racy on test-dev

Models All Y/N Num Oth

Baseline-ATT 56.7 78.9 35.2 36.4
DPPnet (2016) 57.2 80.7 37.2 41.7
SMem (Xu and Saenko) 58.0 80.9 37.3 43.1
SAN (Yang et al. 2016) 58.7 79.3 36.6 46.1
DMN (2016) 60.3 80.5 36.8 48.3
QRU(2) (Li and Jia 2016) 60.7 82.3 37.0 47.7
HieCoAtt (Lu et al. 2016) 61.8 79.7 38.9 51.7
MCB (Fukui et al. 2016) 64.2 82.2 37.7 54.8
MLB (Kim et al. 2017) 65.0 84.0 37.9 54.7
DVQA (Patro et al. 2018) 65.4 83.8 38.1 55.2
AAN + SAN (ours) 62.3 80.4 37.2 49.8
PAAN + SAN(ours) 63.6 81.1 36.9 50.9
AAN + MCB (ours) 66.4 84.6 37.8 54.7
PAAN + MCB (ours) 67.1 85.0 38.4 55.9

Table 3: SOTA: Open-Ended VQA1.0 accuracy on test

4 Experiment

We evaluate the proposed method i.e. PAAN in a number of
ways which includes both quantitative analysis and qualita-
tive analysis. Quantitative analysis includes ablation analy-
sis with other variants that we tried using metrics such as
Rank correlation (RC) score (Das et al. 2016), Earth Mover
Distance (EMD) (Arjovsky, Chintala, and Bottou 2017), and
VQA accuracy etc. as shown in table 1 and 2 respectable.
We also compare our proposed method with various state
of the art models, as provided in table 3 and 4. Qualitative
analysis includes visualization of improvement in attention
maps for some images as we move from our base model to
the PAAN model. We also provide visualization of Grad-
CAM maps for all the models.

4.1 Ablation analysis on model parameter

We provide comparisons of our proposed model PAAN and
other variants along with base model using various metrics
in the table 1 and table 2. Rank correlation and EMD score
are calculated for each model against human attention map
(Das et al. 2016). Each model’s generated attention map is
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Models All Y/N Num Oth

SAN-2 (Yang et al. 2016) 54.9 74.1 35.5 44.5
MCB (Fukui et al. 2016) 64.0 78.8 38.3 53.3
DVQA (Patro et al. 2018) 65.9 82.4 43.2 56.8
MUTAN (Ben et al. 2017) 66.0 82.8 44.5 56.5
MLB (Kim et al. 2017) 66.3 83.6 44.9 56.3
DA-NTN (Bai et al. 2018) 67.5 84.3 47.1 57.9
Counter (2018) 68.0 83.1 51.6 58.9
GCA (Patro et al. 2019) 69.2 85.4 50.1 59.4
BAN (2018) 69.5 85.3 50.9 60.2
BU (Anderson et al. 2018) 70.34 86.6 48.64 61.15

AAN + SAN (ours) 60.1 76.4 35.2 51.8
PAAN + SAN (ours) 61.3 78.0 38.6 52.9
AAN + MCB (ours) 67.6 84.8 47.5 57.7
PAAN +MCB (ours) 68.4 85.1 48.4 59.1

Table 4: SOTA: Open-Ended VQA2.0 accuracy on test

used for this purpose. The rank correlation has an increas-
ing trend. Increase in rank correlation indicates the depen-
dency of the attention maps that are compared. As rank cor-
relation increases, attention map generated from the model
and human attention map becomes more dependent. In other
words, higher rank correlation shows similarity between the
maps. EMD also improves for PAAN. To verify our intu-
ition, that we can learn better attention mask by minimising
the distance between attention mask and explanation mask,
we start with MMD and observe that both rank correlation
and answer accuracy increase by 1.42 and 1.2 % from base-
line respectively. Also, we observe that with CORAL and
MSE based distance minimisation technique, both RC and
EMD improves as shown in the table- 1. Instead of the pre-
defined distance minimisation technique, we adapt an ad-
versarial learning method. The proposed AAN method im-
proves attention globally with respect to Grad-CAM. AAN
improves 3.9% in-terms of RC and 9.5% on VQA accuracy.
Finally,our proposed PAAN, which considers local pixel-
wise discriminator improves 6.4% in RC and 10.4% in VQA
accuracy as mentioned in the table 1 and table 2. Since, hu-
man attention map (Das et al. 2016) is only available for
VQA-v1 dataset, for VQA accuracy we perform ablation for
VQA-v1 only. However, we provide state of the art results
for both datasets (VQA-v1 and VQA-v2).

4.2 Ablation on Explanation: Why do we select
Grad-CAM?

While calculating Grad-CAM one uses the “true” class la-
bels in obtaining activation maps. When observing attention,
one just infers these for a sample without using the ground-
truth label. At test time, Grad-CAM results cannot be used
as true class labels would not be available. By using Grad-
CAM as supervision, the aim is to obtain dense supervision
for the attention module that will guide the attention meth-
ods as against the sparse rewards that are available based
on the correct classification prediction. To validate this we
conduct an experiment with another kind of visual explana-
tion, i.e., RISE (Petsiuk, Das, and Saenko 2018) in a similar
way to Grad-CAM(Selvaraju et al. 2017). In RISE, we use
the true label to obtain RISE based activation maps, instead
of Grad-CAM, that corresponds to the true prediction. This,

as surrogate supervision, is observed by us to provide better
results as compared to using only attention without supervi-
sion. We evaluate the rank correlation of the attention mask
for RISE supervision and observe that it is much lower than
Grad-CAM supervision, as shown in table-1. This method
results in an improvement of 3.22% in terms of rank corre-
lation over the baseline SAN (Das et al. 2016) method while
we obtain an improvement of 6.39% using Grad-CAM su-
pervision. Similarly, we observe that the Earth Mover Dis-
tance of RISE based model is higher than the Grad-CAM
based model. We believe that the suggested framework can
always be improved by any other surrogate supervision tech-
nique that can be developed.

4.3 Why adversarial learning rather than
supervised learning?

Attention and Grad-CAM distributions differ as has been
pointed out. However, the Grad-CAM results are based on
the true labels. Therefore, if the distributions are close, then
it would serve the purpose. This is because, the attention
maps need not exactly correspond to the gradient of the
class activations. By using adversarial learning and trying
to fool the discriminator, we are able to serve our purpose.
This is ensured also by providing comparisons against ex-
plicitly using Grad-CAM as supervision with MSE loss re-
sults in lower performance. Therefore, adversarial learning
is a good method for solving this problem (better even than
other distribution matching techniques such as MMD or
CORAL). To validate this, we conduct an experiment on
distribution matching between the generated attention mask
and the ground truth explanation mask. One of the simplest
ways to measure the overlapping distributions is the Wasser-
stein (Arjovsky and Bottou 2017) distance between them.
We observe that for a perfect adversarial game, the model
achieves pure or Mixed Nash Equilibrium, the joint distri-
bution between p (explanation) distribution and q (atten-
tion) distribution should be diagonal, that is p & q distri-
bution are highly overlapped. And the EMD should be very
small. So, using Grad-CAM supervision for attention mask
helps to achieve more close towards Mixed Nash Equilib-
rium in two player game as compared to random and RISE
based supervision. We also observe that if the overlapping
region between p-distribution and q-distribution is very low,
then KL-divergence in our adversarial game completely fails
and JS-divergence works well. In this experiment, we con-
sider three types of explanations mask, Grad-CAM (Sel-
varaju et al. 2017), RISE (Petsiuk, Das, and Saenko 2018)
and a random mask. We start to observe that with a ran-
dom explanation mask the accuracy is not improving; rather
it is decreasing, when the overlap of the distribution in-
creases, the performance in terms of rank correlation and
accuracy is also increasing. We show the experiment result
for PAAN SAN Ran 07 whose distribution overlapping
is 7% and PAAN SAN Ran 20 distribution overlapping
is 20% as shown in table-2 and second last row of table -1.

4.4 Comparison with baseline and state-of-the-art

We obtain the initial comparison with the baselines on the
rank correlation on human attention (HAT) dataset (Das et
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Figure 2: Examples with different approaches in each column for improving attention using explanation in a self supervised
manner. The first column indicates the given target image and its question and answer. Starting from second column, it indicates
the Attention map (left) / Grad-CAM map (right) for Stack Attention Network, MSE based approach, Coral based approach,
MMD based approach, Adversarial based approach respectively.

al. 2016) that provides human attention while solving for
VQA. Between humans the rank correlation is 62.3%. The
comparison of various state-of-the-art methods and base-
lines are provided in table 1. We use variant of SAN(Yang
et al. 2016) model as our baseline method. We obtain an im-
provement of around 3.7% using AAN network and 6.39%
using PAAN network in terms of rank correlation with hu-
man attention. We also compare with the baselines on the
answer accuracy on VQA-v1(Antol et al. 2015) and VQA-
v2(Goyal et al. 2017) dataset as shown in table 3 and table
4 respectively. We obtain an improvement of around 5.8%
over the comparable baseline. Further incorporating MCB
improves the results for both AAN and PAAN resulting in
an improvement of 7.1% over dynamic memory network and
3% improvement over MCB method on VQA-v1 and 4.2%
on VQA-v2. However, as noted by (Das et al. 2016), using
a saliency based method (Judd et al. 2009) that is trained
on eye tracking data to obtain a measure of where people
look in a task independent manner results in more correla-
tion with human attention (0.49). However, this is explic-
itly trained using human attention and is not task dependent.
In our approach, we aim to obtain a method that can simu-
late human cognitive abilities for solving tasks. The method
is not limited to classification alone though all the meth-
ods proposed for VQA-1 and VQA-2 datasets follow this.
The proposed framework can easily be extended to gen-
erative frameworks that generate answers in terms of sen-
tences. We use visual dialog task(Das et al. 2017) for gen-
erative framework, where we visualised improved attention
map with respect to generated answer. We observe improve-
ment of overall performance in terms of NDGC values by
1.2% and MRR values by 0.78% over the baseline dialog
model (Das et al. 2017). We have provided more results of
AAN and PAAN for VQA and Visual dialog, attention map
visualization, dataset, and evaluation methods in our project
page- 1.

4.5 Qualitative Result

We provide attention map visualization for all models as
shown in Figure 2. We can vividly see how attention is im-

proving as we go from our baseline model (SAN) to the pro-
posed adversarial model (PAAN). For example, in the sec-
ond row, SAN is not able to focus on any specific portion
of the image but as we go towards right, it is able to fo-
cus near the bus. Same can be seen for other images also.
We have also visualized Grad-CAM maps for the same im-
ages to corroborate our hypothesis that Grad-CAM is a bet-
ter way of visualization of network learning as it can focus
on the right portions of the image even in our base line model
(SAN). Therefore, it can be used as a tutor to improve at-
tention maps. Our PAAN model helps to learn the attention
distribution in an adversarial manner from Grad-CAM dis-
tribution as compared to SAN and others. Also, Grad-CAM
is simultaneously improved according to our assumption and
can also be seen in the Figure 2. For example, in SAN the
focus of Grad-CAM is spread over the image. In our pro-
posed model, visualization is improved to focus only on the
required portion. In the project website1, we show variance
in attention map for the same question to the image and its
composite image in VQA2.0 dataset. We also provide stat-
ically significant analysis result for variants of our models
compare with PAAN model in our project page- 1.

5 Conclusion

In this paper we have proposed a method to obtain surro-
gate supervision for obtaining improved attention using vi-
sual explanation. Specifically, we consider the use of Grad-
CAM. However, other such modules could also be consid-
ered. We show that the use of adversarial method to use the
surrogate supervision performs best with the pixel-wise ad-
versarial method (PAAN) performing better against other
methods of using this supervision. The proposed method
shows that the improved attention indeed results in improved
results for the semantic task such as VQA or Visual dialog.
Our method provides an initial means for obtaining surro-
gate supervision for attention and in future we would like to
further investigate other means for obtaining improved at-
tention.

1https://delta-lab-iitk.github.io/TwoPlayer/

11854



References

Anderson, P.; He, X.; Buehler, C.; Teney, D.; Johnson, M.; Gould,
S.; and Zhang, L. 2018. Bottom-up and top-down attention for
image captioning and visual question answering. In CVPR.
Antol, S.; Agrawal, A.; Lu, J.; Mitchell, M.; Batra, D.; Zitnick,
C. L.; and Parikh, D. 2015. VQA: Visual Question Answering. In
ICCV.
Arjovsky, M., and Bottou, L. 2017. Towards principled methods
for training generative adversarial networks. stat 1050:17.
Arjovsky, M.; Chintala, S.; and Bottou, L. 2017. Wasserstein gan.
stat 1050:26.
Bai, Y.; Fu, J.; Zhao, T.; and Mei, T. 2018. Deep attention neural
tensor network for visual question answering. In ECCV.
Bao, Y.; Chang, S.; Yu, M.; and Barzilay, R. 2018. Deriving ma-
chine attention from human rationales. In EMNLP.
Ben, younes, H.; Cadene, R.; Cord, M.; and Thome, N. 2017. Mu-
tan: Multimodal tucker fusion for visual question answering. In
ICCV.
Chen, X., and Lawrence Zitnick, C. 2015. Mind’s eye: A recurrent
visual representation for image caption generation. In CVPR.
Das, A.; Agrawal, H.; Zitnick, C. L.; Parikh, D.; and Batra, D.
2016. Human Attention in Visual Question Answering: Do Hu-
mans and Deep Networks Look at the Same Regions? In EMNLP.
Das, A.; Kottur, S.; Moura, J. M.; Lee, S.; and Batra, D. 2017.
Learning cooperative visual dialog agents with deep reinforcement
learning. In ICCV.
Fang, H.; Gupta, S.; Iandola, F.; Srivastava, R.; Deng, L.; Dollár, P.;
Gao, J.; He, X.; Mitchell, M.; Platt, J.; et al. 2015. From captions
to visual concepts and back. In CVPR.
Fuglede, B., and Topsoe, F. 2004. Jensen-shannon divergence and
hilbert space embedding. In International Symposium onInforma-
tion Theory, 2004. ISIT 2004. Proceedings., 31. IEEE.
Fukui, A.; Park, D. H.; Yang, D.; Rohrbach, A.; Darrell, T.; and
Rohrbach, M. 2016. Multimodal compact bilinear pooling for
visual question answering and visual grounding. In EMNLP.
Geman, D.; Geman, S.; Hallonquist, N.; and Younes, L. 2015.
Visual turing test for computer vision systems. Proceedings of
the National Academy of Sciences of the United States of America
112(12):3618–3623.
Goyal, Y.; Khot, T.; Summers-Stay, D.; Batra, D.; and Parikh, D.
2017. Making the v in vqa matter: Elevating the role of image
understanding in visual question answering. In CVPR.
Jain, S., and Wallace, B. C. 2019. Attention is not explanation. In
NAACL, 3543–3556.
Johnson, J.; Karpathy, A.; and Fei-Fei, L. 2016. Densecap:
Fully convolutional localization networks for dense captioning. In
CVPR, 4565–4574.
Judd, T.; Ehinger, K.; Durand, F.; and Torralba, A. 2009. Learning
to predict where humans look. In ICCV, 2106–2113.
Karpathy, A., and Fei-Fei, L. 2015. Deep visual-semantic align-
ments for generating image descriptions. In CVPR, 3–7.
Kim, J.-H.; On, K. W.; Lim, W.; Kim, J.; Ha, J.-W.; and Zhang,
B.-T. 2017. Hadamard Product for Low-rank Bilinear Pooling. In
ICLR.
Kim, J.-H.; Jun, J.; and Zhang, B.-T. 2018. Bilinear attention net-
works. In NIPS, 1571–1581.
Kullback, S., and Leibler, R. A. 1951. On information and suffi-
ciency. The annals of mathematical statistics 22(1):79–86.

Li, R., and Jia, J. 2016. Visual question answering with question
representation update (qru). In NIPS, 4655–4663.
Lu, J.; Yang, J.; Batra, D.; and Parikh, D. 2016. Hierarchi-
cal question-image co-attention for visual question answering. In
NIPS, 289–297.
Malinowski, M., and Fritz, M. 2014. A multi-world approach
to question answering about real-world scenes based on uncertain
input. In NIPS.
Mao, X.; Li, Q.; Xie, H.; Lau, R. Y.; Wang, Z.; and Paul Smolley,
S. 2017. Least squares generative adversarial networks. In ICCV.
Nash, J. F., et al. 1950. Equilibrium points in n-person games.
Noh, H.; Hongsuck Seo, P.; and Han, B. 2016. Image question
answering using convolutional neural network with dynamic pa-
rameter prediction. In CVPR, 30–38.
Patro; Badri; Namboodiri; and P, V. 2018. Differential attention
for visual question answering. In CVPR, 7680–7688.
Patro, B. N.; Lunayach, M.; Patel, S.; and Namboodiri, V. P. 2019.
U-cam: Visual explanation using uncertainty based class activation
maps. In The IEEE International Conference on Computer Vision
(ICCV).
Petsiuk, V.; Das, A.; and Saenko, K. 2018. Rise: Randomized input
sampling for explanation of black-box models.
Ren, M.; Kiros, R.; and Zemel, R. 2015. Exploring models and
data for image question answering. In NIPS, 2953–2961.
Selvaraju, R. R.; Cogswell, M.; Das, A.; Vedantam, R.; Parikh, D.;
and Batra, D. 2017. Grad-cam: Visual explanations from deep
networks via gradient-based localization. In ICCV.
Shih, K. J.; Singh, S.; and Hoiem, D. 2016. Where to look: Focus
regions for visual question answering. In CVPR.
Simons, D. J., and Chabris, C. F. 1999. Gorillas in our midst:
Sustained inattentional blindness for dynamic events. perception
28(9):1059–1074.
Socher, R.; Karpathy, A.; Le, Q. V.; Manning, C. D.; and Ng, A. Y.
2014. Grounded compositional semantics for finding and describ-
ing images with sentences. TACL 2(1):207–218.
Sun, B., and Saenko, K. 2016. Deep coral: Correlation alignment
for deep domain adaptation. In ECCV, 443–450. Springer.
Tzeng, E.; Hoffman, J.; Zhang, N.; Saenko, K.; and Darrell, T.
2014. Deep domain confusion: Maximizing for domain invariance.
arXiv preprint arXiv:1412.3474.
Vinyals, O.; Toshev, A.; Bengio, S.; and Erhan, D. 2015. Show and
tell: A neural image caption generator. In CVPR.
Xiong, C.; Merity, S.; and Socher, R. 2016. Dynamic memory
networks for visual and textual question answering. In ICML.
Xu, H., and Saenko, K. 2016. Ask, attend and answer: Exploring
question-guided spatial attention for visual question answering. In
ECCV, 451–466. Springer.
Xu, K.; Ba, J.; Kiros, R.; Cho, K.; Courville, A.; Salakhudinov, R.;
Zemel, R.; and Bengio, Y. 2015. Show, attend and tell: Neural
image caption generation with visual attention. In ICML.
Yan, X.; Yang, J.; Sohn, K.; and Lee, H. 2016. Attribute2image:
Conditional image generation from visual attributes. In ECCV.
Yang, Z.; He, X.; Gao, J.; Deng, L.; and Smola, A. 2016. Stacked
attention networks for image question answering. In CVPR.
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